
ECE 604, Lecture 21

November 15, 2018

In this lecture, we will cover the following topics:

• Uniqueness Theorem

– Isotropic Case

– General Anisotropic Case

• Image Theorem

– Electric Charges and Electric Dipoles

– Magnetic Charges and Magnetic Dipoles

– Some Special Geometries

Additional Reading:

• Prof. Dan Jiao’s Lecture 15.

• Sections 1.18, 12.8 of Ramo, Whinnery, and Van Duzer.

• Topic 6.1A, J.A. Kong, Electromagnetic Wave Theory.

• Section 1.11, Lecture on Theory of Optical and Microwave Waveguide.

You should be able to do the homework by reading the lecture notes alone.
Additional reading is for references.

Printed on November 27, 2018 at 23 : 43: W.C. Chew and D. Jiao.
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1 Uniqueness Theorem

Previously, we have derived the uniqueness theorem for Poisson’s equation. If
proper boundary conditions are stipulated for the boundary value problem,
then the solution is unique. It turns out that there is a similar theorem for
electrodynamics or time-varying Maxwell’s equations driven by sources. But
the solution is only guaranteed to be unique under certain conditions. We will
derive those conditions under which uniqueness is guaranteed.

Assume that there exist two solutions in the presence of one common source,
namely, these two solutions are Ea, Ha, Eb, Hb. Both of them satisfy Maxwell’s
equations and boundary conditions. Then, considering general anisotropic in-
homogeneous media, where the tensors µ and ε can be complex so that lossy
media can be included, it follows that

∇×Ea = −jωµ ·Ha −Mi (1.1)

∇×Ha = jωε ·Ea + Ji (1.2)

∇×Eb = −jωµ ·Hb −Mi (1.3)

∇×Hb = jωε ·Eb + Ji (1.4)

By taking the difference of the two solutions, we have

∇× (Ea −Eb) = −jωµ · (Ha −Hb) (1.5)

∇× (Ha −Hb) = jωε · (Ea −Eb) (1.6)

Or alternatively, defining δE = Ea −Eb and δH = Ha −Hb, we have

∇× δE = −jωµ · δH (1.7)

∇× δH = jωε · δE (1.8)

By taking the left dot product of δH∗ with (1.7), and then the left dot
product of δE∗ with the complex conjugation of (1.8), we obtain

δH∗ · ∇ × δE = −jωδH∗ · µ · δH
δE · ∇ × δH∗ = −jωδE · ε∗ · δE∗ (1.9)

Now, taking the difference of the above, we get

δH∗ · ∇ × δE− δE · ∇ × δH∗ = ∇ · (δE× δH∗)
= −jωδH∗ · µ · δH + jωδE · ε∗ · δE∗ (1.10)

Next, integrating the above equation over a volume V bounded by a surface
S, and making use of Gauss’ divergence theorem, we arrive at
¨

V

∇ · (δE× δH∗)dV =

‹
S

(δE× δH∗) · dS

=

˚
V

[−jωδH∗ · µ · δH + jωδE · ε∗ · δE∗]dV (1.11)
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And next, we would like to know what kind of boundary conditions would
make the left-hand side equal to zero. It is seen that the surface integral on the
left-hand side will be zero if:
1. If n̂×E is specified over S so that Ea = Eb, then n̂× δE = 0, and then1‚

S
(δE× δH∗) · n̂dS =

‚
S

(n̂× δE) · δH∗dS = 0.

2. If n̂×H is specified over S so that Ha = Hb, then n̂× δH = 0, and then‚
S

(δE× δH∗) · n̂dS = −
‚

S
(n̂× δH∗) · δEdS = 0.

3. If n̂ × E is specified over S1, and n̂ ×H is specified over S2 (S1 ∪ S2 = S),
then n̂× δE = 0 on S1, and n̂× δH = 0 on S2, then the left-hand side becomes‚

S
(δE× δH∗) · n̂dS =

˜
S1

+
˜

S2
=
˜

S1
(n̂× δE) · δH∗dS
−
˜

S2
(n̂× δH∗) · δEdS = 0.

Thus, under the above three scenarios, the left-hand side of (1.11) is zero,
and then the right-hand side of (1.11) becomes

˚
V

[−jωδH∗ · µ · δH + jωδE · ε∗ · δE∗]dV = 0 (1.12)

For lossless media, µ and ε are hermitian tensors (or matrices2), then it can be
seen, using the properties of hermitian matrices or tensors, that δH∗ ·µ ·δH and
δE · ε∗ · δE∗ are purely real. Taking the imaginary part of the above equation
yields

˚
V

[−δH∗ · µ · δH + δE · ε∗ · δE∗]dV = 0 (1.13)

The above two terms correspond to stored magnetic field energy and stored
electric field energy in the difference solutions δH and δE, respectively. The
above being zero does not imply that δH and δE are zero. For resonance
solutions, the stored electric energy can balance the stored magnetic energy.
When Ha, Hb, Ea and Eb are resonance solutions, their differences δH = Ha−
Hb and δE = Ea−Eb are also resonance solutions. Therefore, δH and δE need
not be zero, even though (1.13) is zero.

Uniqueness can only be guaranteed if the medium is lossy as shall be shown
later. First we begin with the isotropic case.

1.1 Isotropic Case

It is easier to see this for lossy isotropic media. Then (1.12) simplifies to

˚
V

[−jωµ|δH|2 + jωε∗|δE|2]dV = 0 (1.14)

1Using the vector identity that a · (b× c) = c · (a× b) = b · (c× a).
2Tensors are a special kind of matrices.
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For isotropic lossy media, µ = µ′ − jµ′′ and ε = ε′ − jε′′. Taking the real part
of the above, we have from (1.14) that

˚
V

[−ωµ′′|δH|2 − ωε′′|δE|2]dV = 0 (1.15)

Since the integrand in the above is always negative definite, the integral can be
zero only if

δE = 0, δH = 0 (1.16)

everywhere in V , implying that Ea = Eb, and that Ha = Hb. Hence, it is seen
that uniqueness is guaranteed only if the medium is lossy.

Notice that the same conclusion can be drawn if we make µ′′ and ε′′ negative.
This corresponds to active media, and uniqueness can be guaranteed for a time-
harmonic solution.

1.2 General Anisotropic Case

The proof for general anisotropic media is more complicated, and is only for
the interested readers. For the lossless anisotropic media, we see that (1.12) is
purely imaginary. However, when the medium is lossy, this same equation will
have a real part. Hence, we need to find the real part of (1.12) for the general
lossy case. To this end, we need to find the complex conjugate3 of (1.12), which
is scalar, and add it to itself to get its real part. The complex conjugate of the
scalar c = δH∗ · µ · δH is c∗ = δH · µ∗ · δH∗ = δH∗ · µ† · δH. Similarly, the
complex conjugate of the scalar d = δE · ε∗ · δE∗ is d∗ = δE∗ · ε† · δE.4

Finally, after taking the complex conjugate of the scalar quantity (1.12) and
add it to itself, we have

˚
V

[−jωδH∗ · (µ− µ†) · δH− jωδE∗ · (ε− ε†) · δE]dV = 0 (1.17)

For lossy media, −j(µ − µ†) and −j(ε − ε†) are hermitian negative matrices.
Hence the integrand is always negative definite, and the above equation can-
not be satisfied unless δH = δE = 0 everywhere in V . Thus, uniqueness is
guaranteed in a lossy anisotropic medium.

Similar statement can be made as the isotropic case if the medium is ac-
tive. Then the integrand is positive definite, and the above equation cannot be
satisfied unless δH = δE = 0 everywhere in V and hence, uniqueness is satisfied.

3Also called hermitian conjugate.
4To arrive at these expressions, one makes use of the matrix algebra rule that ifD = A·B·C,

then D
t
= C

t ·Bt ·At
. This is true even for non-square matrices. But for our case here, A

is a 1 × 3 row vector, and C is a 3 × 1 column vector, and B is a 3 × 3 matrix. In vector
algebra, the transpose of a vector is implied. Also, in our case here, D is a scalar, and hence,
its transpose is itself.
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1.3 Epilogue

The proof of uniqueness for Maxwell’s equations is very similar to the proof of
uniqueness for a matrix equation

A · x = b (1.18)

If a solution to a matrix equation exists without excitation, namely, when b = 0,
then the solution is the null space solution, namely, x = xN . In other words,

A · xN = 0 (1.19)

These null space solutions exist without a “driving term” b on the right-hand
side. For Maxwell’s Equations, it corresponds to the source terms. They are
like the homogeneous solution of an ordinary differential equation or a partial
differential equation. In an enclosed region of volume V bounded by a surface
S, homogeneous solutions are the resonant solutions of this Maxwellian system.
When these solutions exist, they give rise to non-uniqueness.

Also, notice that (1.7) and (1.8) are Maxwell’s equations without the source
terms. In a closed region V bounded by a surface S, only resonance solutions
can exist when there are no source terms.

One way to ensure that these resonant solutions do not exist is to put in
loss or gain. When loss or gain is present, then the resonant solutions are
decaying sinusoids or growing sinusoids. Since we are looking for solutions in
the frequency domain, or time harmonic solutions, these non-sinusoidal solutions
are outside the solution space: They are not part of the time-harmonic solutions
we are looking for. Therefore, there are no resonant null-space solutions.

2 Image Theory

Image theory can be used to derived closed form solution to boundary value
problems when the geometry is simple and has a lot of symmetry. The closed
form solutions in turn offer physical insight to the problem.

2.1 Electric Charges and Electric Dipoles

Image theory for a flat conductor surface is quite easy to derive. To see that,
we can start with electro-static theory of putting a positive charge above a flat
plane. For electrostatics, the plane does not have to be a perfect conductor, but
only a conductor (a metal). The electric charges will move around until they
come to rest. This is only possible if there is no electric field inside the conductor.
As a result, the tangential electric field on the surface of the conductor has to be
zero due to the continuity of tangential electric field across an interface. Hence,
the static electric field cannot have a tangential component of the electric field
on the surface.

The tangential electric field can be canceled by putting an image charge of
opposite sign at the mirror location of the original charge. This is shown in
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Figure 1. Now we can mentally add the total field due to these two charges.
When the total electric field due to the original charge and image charge is
sketched, it will look like that in Figure 2. It is seen that the electric field
satisfies the boundary condition at the conductor interface due to symmetry.

Figure 1:
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Figure 2:

An electric dipole is made from a positive charge placed in close proximity to
a negative charge. Using that a charge reflects to a charge of opposite polarity,
from the above, one can easily see that a horizontal electric dipole reflects to
a horizontal electric dipole of opposite polarity while a vertical electric dipole
reflects to vertical electric dipole of the same polarity.
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Figure 3:

For electrostatic problems, a conductive medium suffices to produce surface
charges that shield out the electric field from the bottom half space so that
n̂×E = 0 on the conductor surface, and no current flows in the conductor.

For a perfect electric conductor (PEC), becasue J = σE where σ → ∞, an
infinitesimal electric field will yield an infinite current, and hence an infinite
magnetic field. A time-varying magnetic field yields an electric field that will
drive an electric current, and these fields and current will be infinitely large.
Hence, the only possibility is for the time-varying electromagnetic fields to be
zero inside a PEC.

Thus, the charges can re-orient themselves instantaneously on the PEC sur-
face when the dilpoles are time varying. This is not the case when interface is
between a finite conductor medium and free space. Therefore, the electric field
E is always zero inside PEC, and hence n̂×E = 0 on the surface. Consequently,
the reflected images in Figure 3 are valid even for a time-varying dipole over a
PEC surface.

2.2 Magnetic Charges and Magnetic Dipoles

A static magnetic field can penetrate a conductive medium. However, a time-
varying magnetic field inside a conductive medium will produce an electric field,
which in turn produces the conduction current via J = σE. This is termed eddy
current, which by Lenz’s law, repels the magnetic field from the conductive
medium.

Now, consider a static magnetic field penetrating into a perfect electric con-
ductor, an infinitesimal amount of time variation will produce an electric field,
which in turn produces an infinitely large eddy current. So the stable state
for a static magnetic field is to be expelled from the perfect electric conduc-
tor. This in fact is what we observe when a magnetic field is brought near a
superconductor. Therefore, for the static magnetic field, n̂ ·B = 0 on the PEC
surface.
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Now, assuming a magnetic monopole exists, it will reflect to itself on a PEC
surface so that n̂ · B = 0 as shown in Figure 4. Therefore, a magnetic charge
reflects to a charge of similar polarity on the PEC surface.

Figure 4:

By extrapolating this to magnetic dipoles, they will reflect themselves to the
magnetic dipoles as shown in Figure 5. A horizontal magnetic dipole reflects
to a horizontal magnetic dipole of the same polarity, and a vertical magnetic
dipole reflects to a vertical magnetic dipole of opposite polarity.

Figure 5:

A surface that is dual to the PEC surface is the perfect magnetic conductor
(PMC) surface. The magnetic dipole is also dual to the electric dipole. Thus,
on a PMC surface, these electric and magnetic dipoles will reflect differently as
shown in Figure 6. One can go through Gedanken experiments and verify that
the reflection rules are as shown in the figure.
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Figure 6:
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Figure 7:

2.3 Some Special Geometries

Even though for conductive medium, a time-varying electric field is not neces-
sary, the image theorem can be generalized to a PEC medium easily. For the
geometry shown in Figure 7, one can start with electrostatic theory, and con-
vince oneself that n̂×E = 0 on the metal surface with the placement of charges
as shown. For PEC surfaces, one can extend these cases to time-varying dipoles
because the charges in the PEC medium can re-orient instantaneously to shield

11



out or expel the E and H fields. Again, one can repeat the above exercise for
magnetic charges, magnetic dipoles, and PMC surface.

Figure 8:

One curious case is for a static charge placed near a conductive sphere as
shown in Figure 8. As worked out in the textbook (p. 48 and p. 49, Ramo et
al.), a charge of +Q reflects to a charge of −QI inside the sphere. However,
this cannot be generalized to electrodynamics, because a time-harmonic, charge
conserving dipole will reflect to a non-charge conserving dipole. Moreover, due
to the retardation effect, an time-varying dipole or charge will be felt at different
points asymmetrically on the surface of the sphere from the original and image
charges.

Figure 9:

When a static charge is placed over a dielectric interface, image theory can
be used to find the closed form solution. This solution can be derived using
Fourier transform technique which is outside the scope of this course. It can
also be extended to multiple interfaces. But image theory cannot be used for
the electrodynamic case due to the different speed of light in different media,
giving rise to different retardation effect.
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